Anatoly Levenchuk (ailev) wrote,
Anatoly Levenchuk

Нейроэволюция в тени, но не сдаётся

Вышло несколько интересных работ по нейроэволюции:
-- Convolution by Evolution: Differentiable Pattern Producing Networks,, Our main result is that DPPNs can be evolved/trained to compress the weights of a denoising autoencoder from 157684 to roughly 200 parameters, while achieving a reconstruction accuracy comparable to a fully connected network with more than two orders of magnitude more parameters.
-- Simple Evolutionary Optimization Can Rival Stochastic Gradient Descent in Neural Networks, (впрочем, я уже давал эту ссылку). using this approach with only a simple evolutionary algorithms (called the limited evaluation EA or LEEA) is competitive with the performance of the state-of-the-art SGD variant RMSProp on several benchmarks with neural networks with over 1,000 weights.

Урожай работ этого года будут собирать, конечно, к 8-9 декабря 2016, ICERN 2016: 18th International Conference on Evolutionary Robotics and Neuroevolution,
  • Post a new comment


    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

  • 1 comment